Prevalence of High-Risk Bladder Categorization with Prenatal and Postnatal Myelomeningocele Repair Types

Jonathan A. Gerber, Alexandra N. Borden, Duong D. Tu, and Paul F. Austin

Texas Children’s Hospital and Baylor College of Medicine
Houston, Texas
BACKGROUND AND PRIOR STUDIES

- SB: MC permanently disabling birth defect (34/100k prevalence)
- MC worldwide repair type remains postnatal open
- Increasing use of prenatal intervention
- Growing number institutions performing fetoscopic
BACKGROUND AND PRIOR STUDIES

- Landmark MOMS trial* evaluated prenatal vs. postnatal repair
 - Significantly reduced need for VP shunt
 - Reduced rate hindbrain herniation
 - Improved motor function

- No significant urologic benefit noted on multiple MOMS substudies**
 - Studies focused on CIC and/or continence rates

BACKGROUND AND PRIOR STUDIES

• Main goals of SB urologic care
 – Obtain + maintain SAFE bladder
 • Protect kidneys / upper tracts
 – Eventual social continence

• Most require intervention for safe bladder and/or continence
 – Prenatal and postnatal
AIM + HYPOTHESIS

• We sought to evaluate differences in bladder safety between 3 MMC repair types

• We hypothesize that prenatal, especially fetoscopic, repair will lead to improved bladder safety compared to postnatal repair in the near term
METHODS

- Retrospective
- All prenatal MMC repairs
 - Prenatal open (PRO)
 - Fetoscopy (FMR)
- Postnatal repair (PST) with MOMS inclusion/exclusion criteria to match
- **Initial studies** within 1st year
- **Follow up studies** within 18mos of initial

<table>
<thead>
<tr>
<th></th>
<th>Initial Studies</th>
<th>Follow up Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>FMR</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>PST</td>
<td>51</td>
<td>39</td>
</tr>
</tbody>
</table>
METHODS

- **US**: evaluated for HN
- **VCUG**: evaluated for VUR
- **CMG**: evaluated for bladder risk categorization

<table>
<thead>
<tr>
<th>Safe</th>
<th>Intermediate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Normal Capacity</td>
<td>• MDSP/DLPP 25-40cmH20</td>
<td>• MDSP/DLPP >40cmH20</td>
</tr>
<tr>
<td>• MDSP/DLPP <25cmH20</td>
<td>• Presence of NDO</td>
<td>• Presence of NDO + DSD</td>
</tr>
<tr>
<td>• No NDO</td>
<td>• No DSD</td>
<td></td>
</tr>
<tr>
<td>• No DSD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MDSP = Maximum Detrusor Storage Pressure; DLPP = Detrusor Leak Point Pressure; NDO = Neurogenic Detrusor Overactivity; DSD = Detrusor Sphincter Dyssynergia
FINDINGS: HIGH-RISK BLADDER DISTRIBUTION

Initial High
Final High
FINDINGS

- **PST**: 51% Improved from High, 13% Remained High, 25% Worsened to High, 10% Improved or Remained Less than High
- **PRO**: 35% Improved from High, 35% Remained High, 25% Worsened to High, 0% Improved or Remained Less than High
- **FMR**: 46.0% Improved from High, 46.0% Remained High, 7.7% Worsened to High, 0.0% Improved or Remained Less than High
FINDINGS

FMR improved from high risk in 46%

PRO and FMR never worsened to high risk

PST worsened to high risk in 10%
FINDINGS

p = 0.0256

VUR

Initial VUR
Follow up VUR

HN

Initial HN
Follow up HN
CONCLUSIONS

- PRO/FMR associated with improved bladder health in near term

- FMR shows promising results compared to PRO and postnatal in regards to bladder safety
 - Larger studies with longer follow up are warranted to determine statistical significance, cost, and public health benefit