Quantifying the Force Needed for Ureteral Stent Removal:

Initial evaluation of a magnetic stent removal device on benchtop and porcine models

Kunj R Sheth, Jeffrey T White, Kathleen Puttmann, David Waters, Matias Soto, Martin Bell, Tasha Aboufadel, Michael J Heffernan, Eric Richardson, Sang Hoon Song, Chester J Koh
Stent–X Magnetic Ureteral Stent Removal Device

Magnetic bead and stent are installed in initial pyeloplasty

3-5 weeks later, a surgeon pulls on the bead with an electromagnet, removing both the bead and stent in a 8 minute procedure

1st Prize – 2015 Rice Annual Showcase / Grand Prize – 2015 DMD Student Showcase
TCH Department of Surgery Seed Grant (Clayton Award)
NIDDK SBIR Phase I (1R43DK1153336-01)
Study Objective

- Little is known about the forces required to remove indwelling ureteral stents

Initial Objective

- To characterize and quantify the required forces for stent removal for testing of future prototypes
Lazarus 3D Benchtop Model
Modified Porcine Model

- Midline suprapubic incision
- Distal ureter transected for antegrade stent placement
- Urethra dissected distally from the bladder
- Urethral transection close to the urogenital sinus
- Urethra sutured to the inferior portion of the skin incision
 - cutaneous urethrostomy
Methods - Force Measurements

- HF-10 digital force gauge by M&A Instruments
 - Quantified force required to remove different stents
- External magnets versus catheter tip magnets
 - Quantified magnetic force
 - Measured success with various magnetic beads
Results – Force Measurements

Table 1: Force to remove ureteral stent on benchtop and porcine model

<table>
<thead>
<tr>
<th>Bead type/Stent size</th>
<th>BENCHTOP - Max Retrieval Force in N</th>
<th>PIG - Max Retrieval Force in N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bladder</td>
<td>Ureter</td>
</tr>
<tr>
<td>5Fr x 14cm double-J Stent</td>
<td>0.793 ± 0.216</td>
<td>4.734 ± 0.620</td>
</tr>
<tr>
<td>5Fr x 14cm double-J Stent with 3.2x3.2mm cylindrical, hollow bead</td>
<td>0.993 ± 0.137</td>
<td>4.055 ± 0.564</td>
</tr>
<tr>
<td>5Fr x 14cm double-J Stent with 4.8x4.8mm cylindrical, hollow bead</td>
<td>1.685 ± 0.154</td>
<td>3.920 ± 0.624</td>
</tr>
<tr>
<td>3.2x3.2mm cylindrical, hollow bead</td>
<td>0.198 ± 0.044</td>
<td></td>
</tr>
<tr>
<td>4.8x4.8mm cylindrical, hollow bead</td>
<td>1.893 ± 0.186</td>
<td></td>
</tr>
<tr>
<td>5Fr x 14cm equivalent straight stent</td>
<td>0.293 ± 0.148</td>
<td>4.284 ± 0.584</td>
</tr>
<tr>
<td>Stent unfurling only</td>
<td>0.793 ± 0.216</td>
<td></td>
</tr>
</tbody>
</table>
Results – Magnetic Force Requirements

• Based on the measurements, a goal force of 1 N would be required to definitively remove the stent.
• For the external magnet design, this force needed to be present at a distance of 4-5 cm, correlating to urethral length.

Figure 3. Distance vs force plots using the a) EM at 3A current and b) 2"x1" cylindrical permanent magnet.
Design Change → Magnetic Tip Catheter

- Filled bladder appears to reduce friction and allow for easier passage
 - Allows for better results with smaller magnet
Conclusions

- The ureteral stent removal force is < 1N on the porcine model.

- However, external magnets could not generate sufficient force due to the inverse square relationship with urethral length.

- Alternatively, the catheter tip magnet model appears to overcome the limitation of distance.

- Further studies are needed to define the optimal combination of catheter tip magnet size and stent magnetic bead size.
Acknowledgements

1. TCH Department of Surgery Cooley Innovation Award
2. TCH Department of Surgery Seed Grant (Clayton Award)
3. NIDDK SBIR Phase I Grant (1R43DK1153336-01)
4. PDA P50 Grant (P50FD006428)