Evaluating Bladder Function and Safety in Prenatal Fetoscopic Versus Prenatal Open Myelomeningocele Repair

Jonathan A. Gerber, Paul F. Austin, Alexandra N. Borden, William E. Whitehead, Jonathan Castillo, Heidi Castillo, Michael A. Belfort, and Duong D. Tu

Texas Children’s Hospital and Baylor College of Medicine Houston, Texas
BACKGROUND

• SB: MC permanently disabling birth defect (34/100k prevalence)

• Increasing use of prenatal intervention after MOMS trial

• Minimally invasive surgery becoming mainstream
 – Fetoscopic MMC repair used by a growing number of institutions
BACKGROUND

• Fetoscopic benefits
 – Demonstrated within MFM and NSGY literature*

 ↓ preterm labor rates → 2 week gestation age improvement with fetoscopic

 ↑ vaginal delivery rates

• CIC +/- anticholinergics is norm in SB population (90%+)
 – Not ideal metric for success

*Belfort MA, et al, Obstetrics and Gynecology, 2017
AIM + HYPOTHESIS

• Establish utility of the UMPIRE bladder risk stratification as a predictor of urologic outcome

• We hypothesized that prenatal fetoscopic repair is superior to prenatal open with respect to postnatal bladder risk
METHODS

• Retrospective
• All prenatal MMC repairs
 – Prenatal open
 – Fetoscopic repair
• RBUS and CMG <9mo age AND
• Follow up studies within 18mo of initial

<table>
<thead>
<tr>
<th>Repair Type</th>
<th>Initial High Risk</th>
<th>Follow up High Risk</th>
<th>Total Improved</th>
<th>Initial HN</th>
<th>Follow up HN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prenatal Open</td>
<td>11 (73.3%)</td>
<td>6 (40%)</td>
<td>5 (33%)</td>
<td>2 (13%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>(N=15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetoscopic</td>
<td>7 (54%)</td>
<td>1 (7.7%)</td>
<td>8 (62%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>(N=13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHODS

• US: evaluated for HN
 – None, Unilateral, or Bilateral

• CMG: evaluated for bladder risk categorization
 – Normal/Abnormal SAFE
 – INTERMEDIATE
 – HIGH

<table>
<thead>
<tr>
<th>Safe</th>
<th>Intermediate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Normal Capacity</td>
<td>• MDSP/DLPP 25-40cmH2O</td>
<td>• MDSP/DLPP >40cmH2O</td>
</tr>
<tr>
<td>• MDSP/DLPP <25cmH20</td>
<td>• Presence of NDO</td>
<td>• Presence of NDO + DSD</td>
</tr>
<tr>
<td>• No NDO</td>
<td>• No DSD</td>
<td></td>
</tr>
<tr>
<td>• No DSD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MDSP = Maximum Detrusor Storage Pressure; DLPP = Detrusor Leak Point Pressure; NDO = Neurogenic Detrusor Overactivity; DSD = Detrusor Sphincter Dyssynergia
FINDINGS

FETOSCOPIE: Less High Risk bladders present on initial and follow up studies
FINDINGS

- Hydronephrosis present in 13% of prenatal open
 - Resolved in all

- No hydronephrosis seen on initial or follow up RBUS in fetoscopic
CONCLUSIONS

• Fetoscopic demonstrates fewer high risk bladders on:
 • Initial evaluation (54% vs. 73%)
 • Final follow-up (7.7% vs. 40%)

• Fewer prenatal open improve on follow up (33% vs 62%)

• Larger, multi-institutional, prospective studies are needed